inductive effect between the bond moment of C=O and that of C-Cl and assuming that these bonds are in the same plane for this form.¹⁰ This value is the same as that estimated by Mizushima, et al.,11 for the more stable rotational isomer of α -chloroacetone. The moment μ_a is similarly estimated to be 2.5 D which is nearly the same as that estimated by Kumler, et al.,12 for the (a)-The value of a^3 was determined to be 4.54 form. imes 10⁻²³ cc. by the measurement of density at 23° $(d^{23}_4 1.158)$. The dielectric constant of this substance was measured to be 26.8 at the same temperature. By use of these values the values of $\Delta(\Delta E)$ were calculated. The results are shown in Table V together with the energy differences

TABLE V								
ENERGY DIFFERENCE BETWEEN THE TWO FORMS								
State	Dielectric constant	ΔE , kca Obsd.	al./mole Caled.					
Pure liq.	26.8	1.11	1.0					
Pyridine soln.	12.5	0.94	0.94					
CS ₂ soln.	2.63	0.81	0.55					

determined by the intensity measurements. The value of $\Delta(\Delta E)$ and those of ΔE have the same meaning, because the energy difference ΔE in the vapor is nearly zero.

The contour of the broad band near 1730 cm.⁻¹ was investigated for the various states by use of the CaF₂ prism. Because of a complicated feature of the contour, it seems difficult to divide the broad

(10) This assumption seems to be reasonable when taking account of the structure of α -methylcyclohexanone determined by C. Romers (*Rec. trav. chim.*, **75**, 956 (1956)) with the aid of electron diffraction.

(11) S. Mizushima, T. Shimanouchi, T. Miyazawa, I. Ichishima, K. Kuratani, I. Nakagawa and N. Shido, J. Chem. Phys., 21, 815 (1953).
(12) W. D. Kumler and A. C. Huitric, Turs JOURNAL, 78, 3360 (1956).

band into the band of the (e)-form and that of the (a)-form.

The band at 714 cm.⁻¹ may be assigned to the C–Cl stretching vibration for the (e)-form and the band at 699 cm.⁻¹ to that for the (a)-form. The assignments are in agreement with the rule¹³ reported by one of the authors that for the C–X (X = halogen) stretching frequencies of various cyclohexane derivatives the frequency of the C–X bond having the X atom in the (e)-orientation is higher than that of the bond having the X atom in the (a)-orientation. According to Jones, *et al.*,¹⁴ the band at 1430 cm.⁻¹ may be assigned to the scissoring vibration of the α -methylene group next to the carbonyl group.

By use of the moments, μ_e and μ_a , estimated for the two isomers and of the energy difference ΔE determined by the intensity measurements the dipole moment μ can be calculated by the formula

$$\mu = \{ (r\mu_{2}^{2} + \mu_{e}^{2})/(1+r) \}^{1/2}$$

where *r* is the abundance ratio of two isomers and is given approximately as

$$r = \exp(-\Delta E/RT)$$

The calculated value of 2.3 D is in good agreement with the observed value listed in Table III. In agreement with the results obtained by studying the infrared spectra, the observed value of the dipole moment also is evaluated by considering only the equilibrium of the (e)- and the (a)-form without assuming the coexistence of any other form, such as a flexible form assumed by Kumler, $et al.^{12}$

(13) K. Kozima, Bull. Tokyo Inst. Tech., 1 (1952) (in Japanese).

(14) R. N. Jones and A. R. H. Cole, This Journal, 74, 5648 (1952).O-OKAYAMA, MEGURO-KU, TOKYO, JAPAN

[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, KANSAS STATE UNIVERSITY OF AGRICULTURE AND APPLIED SCIENCE]

Neutron and γ -Irradiation of Phosphorus Trichloride¹

By D. W. Setser, H. C. Moser and R. E. Hein

RECEIVED AUGUST 11, 1958

Samples of liquid phosphorus trichloride were reactor irradiated for varying lengths of time, and the yield of P^{32} -labeled PCl₃ was measured. The percentage of the P^{32} in combination as $P^{32}Cl_3$ changed from 60 to 90% with increasing irradiation time. A radiation induced oxidation of radioactive P_2Cl_4 to form PCl₃ has been postulated to explain the changing distribution of P^{32} . Two labeled products, $P^{32}OCl_3$ and $P^{32}Cl_3$, were identified in reactor irradiated POCl₃. The relative yield of $P^{32}OCl_3$ was also found to increase with irradiation time.

Introduction

The present study was undertaken to investigate the chemical effects accompanying $P^{31}(n,\gamma)P^{32}$ reactions in PCl₃ and to determine what influence the γ -ray dosage has upon the distribution of products containing P^{32} . When samples of PCl₃ are reactor irradiated, they are subjected to a large γ ray flux because of contributions from both external and internal sources. This system is also somewhat unusual in that recoil atoms from nuclear reactions should thermalize rapidly because all of the atoms have nearly equal mass.

Phosphorus atoms of PCl_3 which capture neutrons are very likely given enough recoil energy to break one or more of their bonds. The initial γ -ray emitted by a phosphorus atom following neutron capture is 3.5 Mev. or greater² which produces a recoil energy of at least 205 e.v. This is sufficient energy to break the chemical bonds in PCl_3 (3.4 e.v.) unless successive emission of γ rays cancels the recoil energy.

(2) B. B. Kinsey, G. A. Bartholomew and W. H. Walker, *Phys. Rev.*, **85**, 1012 (1952).

⁽¹⁾ Work performed under contract No. AT (11-1)-584 with the U.S. Atomic Energy Commission. Taken in part from a thesis submitted by Donald W. Setser in partial fulfillment of the requirements for the degree of Master of Science, January, 1958.

Results of a previous study³ gave indication that 88% of the total P³² was either re-formed or retained in chemical combination as P³²Cl₃ regardless of total neutron dosage, irradiation temperature or phase (liquid or gas). Shorter irradiation times were used in the present study, and lower percentages of P³² in combination as P³²Cl₃ were found. If extensive bond ruptures occur in PCl₃ leading to the formation of other phosphoruschlorine compounds, the latter must be converted to PCl₃ by a radiation effect.

Experimental

Reagents.—Reagent grade (Mallinckrodt) PCl₃ was quadruply distilled through a six inch column packed with glass helices. Samples for irradiations were prepared from this by distilling the PCl₃ at reduced pressure in the presence of helium into 1.6×4 cm. quartz ampoules cooled in a Dry Iceacetone bath. The desired volume of PCl₃ then was sealed in the ampoule at a pressure of about 250 μ . Reagents for carriers were prepared by doubly distilling reagent grade PCl₃ (Mallinckrodt) and POCl₃ (Merck); PSCl₃ carrier was synthesized⁴ and redistilled, and reagent grade decane (Matheson, Coleman and Bell) was used without further treatment for some samples. In the later work the decane was shaken with concentrated H₂SO₄ for 20 hr., washed with water and redistilled.

Irradiations.—Samples were irradiated in the X-10 Graphite Reactor at the Oak Ridge National Laboratory. Two positions were used depending upon the requested neutron dosage. One position had a reported thermal flux of 1×10^{11} n. cm.⁻² sec.⁻¹ and γ -intensity of 5.6 \times 10⁴ r. hr.⁻¹; the other position had a flux of 6 \times 10¹¹ n. cm.⁻² sec.⁻¹ and γ intensity of 1.55 \times 10⁷ r. hr.⁻¹. The average temperature was reported as 50°. γ -Irradiations were done in the Oak Ridge facility, which had an intensity of about 10⁶ r. hr.⁻¹.

Separations.—Irradiated samples were opened using the procedure of Conn and Hein.³ Carriers (PCl₃, POCl₃, PSCl₃ and decane) were added, and the mixture was separated by distillation using a jacketed, $3 \text{ ft} \times 1$ in. column packed with glass helices. Aliquots were removed prior to distillation for P² radioassay. One-ml. fractions of the phosphorus compounds were collected from the distillation column; the decane remained in the distillation pot and served as a holdback carrier for high boiling products. Results of a representative distillation are given in Fig. 1. In this distillation 98% of the PCl₃ was recovered from the mixture; the separations of the other carriers were not as efficient.

Some distillations were carried out at reduced pressure to effect separations at lower temperatures, and the maximum distillation pot temperatures were about 60° in these distillations. Only PCl₃ and decane carriers were used because of the difficulty in separating PCl₃, POCl₃ and PSCl₃ at reduced pressures.

Counting Technique.—Counting data were obtained using a dipping counter assembly. The Tracerlab TGC 5 Geiger counter used had a wall thickness of 30 mg. cm.⁻² which was sufficient to absorb the soft β -particles from S³⁵. With water as the counting liquid, the counter assembly had an efficiency of 10% for P³² radioactivity. Counting samples were prepared by mixing aliquots from the distillation fractions with a such a such a such a such as the counter such as the same barrier of the second s

Counting samples were prepared by mixing aliquots from the distillation fractions with enough xylene to give total volumes of 15 ml. The counter assembly was rinsed and a background reading was taken between each counting sample.

Results

Neutron Irradiations. (1).—Results of distillations of the irradiated PCl_3 samples are summarized in Table I in order of increasing P^{32} concentration. Experimental measurements of total P^{32} radioactivity were used to calculate the concentrations of P^{32} present at the time of removal from the reactor. These quantities are proportional to the neutron dosages received by the samples and are listed in the second column. Percentages recorded

(3) R. K. Conn and R. E. Hein, THIS JOURNAL, 79, 60 (1957).

(4) R. Knotz, Osterr. Chem. Ztg., 50, 128 (1949).

Fig. 1.—Distillation curve for the separation of 20 nul. of PCl₃, 13.5 ml. of POCl₃, 15.3 ml. of PSCl₃ and 15 ml. of decane: O, head temperatures: \bullet , distillation pot temperatures.

in the sixth column are estimates of additional amounts of activity which were carried by the final PCl_3 fractions in distillations at atmospheric pressure. These peaks were found for the shorttime irradiations only, and Fig. 2 shows results of

Fig. 2.—Specific activities of fractions from distillations of samples F and I. The first dotted line shows the transition from PCl₃ carrier to POCl₃ carrier; the second shows the transition from POCl₃ to PSCl₃: \bullet , sample F; O, sample I.

representative short and long-time irradiations. The peak, which is shown in the curve for sample F, occurred as the pot temperature approached 120°. Sample D was divided for analysis; one part, designated D, was distilled at atmospheric pressure, and the other, D', was distilled at reduced pressure. Sample A was also separated by distillation at reduced pressure.

Figure 3 is a plot of the variation of the % retention with the square root of the number of P³² atoms ml.⁻¹. The square root of the latter was used in order to contract the scale. The standard deviation indicated at each point was calculated from the results of the specific activity measurements.

(2).—Two samples of POCl₃ were irradiated. Experimental procedures were identical to those

Fig. 3.—Percentage P³² in combination as P³²Cl₃ (% retention) following reactor irradiation of PCl₃.

used for the PCl₃ samples. One sample contained $1.6 \times 10^{10} P^{32}$ atoms ml.⁻¹ and 45% of the P³² was carried by PCl₃, 29% by POCl₃, 4% by PSCl₃ and 14% remained in the decane; the other sample contained $1.3 \times 10^{11} P^{32}$ atoms ml.⁻¹ and 32% of the P³² was carried by PCl₃, 45% by POCl₃, 2% by PSCl₃ and 18% remained in the decane. For both samples, equal specific activities were found for fractions collected while PCl₃ or POCl₃ was distilling.

TABLE I DISTRIBUTION OF P³² IN REACTOR IRRADIATED PCl₃

· ·	No. of	%	% in	_% in	% iu
Sample	Pos atoms mi.	Retentiona	PSCI	Decane	Реак
\mathbf{A}^{b}	$7.58 imes10^8$	62.2 ± 2		29.0	0
В	$1.21 imes 10^9$	67.2 ± 3	1.0	19.4	7
C^{c}	$5.95 imes10^9$	73.6 ± 3	0.9	13.0	
D	$8.25 imes 10^9$	69.4 ± 3	0.7	14.4	16
D'^{b}	$8.25 imes 10^9$	65.5		28.8	0
\mathbf{E}^{d}	8.51×10^9	98.0 ± 2	0.0	0.67	0
F	9.44×10^{9}	62.4 ± 2	1.0	12.7	17
G	$9.72 imes10^9$	75.0 ± 2	0.7	14.2	2
Н	$1.98 imes10^{10}$	79.7 ± 5	1.0	11.4	0
I	$7.99 imes10^{10}$	94.1 ± 4	0.4	1.0	0
J	$1.57 imes 10^{11}$	95.4 ± 2	0.8	2.0	0
K	2.29×10^{11}	87.3 ± 2	2.0	3.1	()

^a Per cent. retention is defined as the per cent. of the total P³² radioactivity which distilled with the PCl₃ exclusive of the additional activity found in the peaks. ^b Distilled at reduced pressure. ^c Sample C had some radioactivity in the peak but the data were not complete enough to analyze. ^d Sample E received a γ -ray dosage of 2.9 \times 10⁷ roentgens in addition to the pile irradiation.

(3).—A value of 3×10^{10} Mev. sec.⁻¹ was calculated as the approximate energy deposited in an 8-ml. cylindrical (1.6 cm. \times 4 cm.) sample of PCl_3 irradiated for one minute at a thermal flux of 1×10^{11} n. cm.⁻² sec.⁻⁽ and γ -intensity of 5.6 \times 10⁴ r. hr.⁻¹. The amount of P³² found in sample B (irradiated for 60 sec. at 1×10^{11} n. cm.⁻²sec.⁻¹) was used to calculate the number of $P^{31}(n,\gamma)P^{32}$ reactions and yields for neutron induced reactions in chlorine. It was assumed that the ratio of the yields for particular reactions was the same as the ratio of their macroscopic cross sections. The γ -ray energy for each process was taken as the quotient of the Q-value and 2.5, the approximate number of γ -rays emitted per neutron capture.⁵ The largest contribution to the energy absorbed was from the attenuation of internal (67%) and external (32%) γ -rays.

(5) C. O. Muehlhause, Phys. Rev., 79, 277 (1950).

 γ -Irradiations. (1).—Following neutron irradiation, sample E (Table I) was subjected to an additional γ -irradiation of 2.9 \times 10⁷ r. For comparison, sample G was given a similar reactor irradiation but was not subjected to any further γ -irradiation.

(2).—A 6.8-ml. aliquot of a 2.3% solution of P³²-labeled white phosphorus in PCl₃ was irradiated with γ -rays of intensity 2.6 \times 10⁶ r. hr.⁻¹ for a period of 13.8 hr. The sample was analyzed 24 days after the solution was prepared. Another sample was used as a control without irradiation and was analyzed 22 days after preparation. Carriers $(PCl_3, POCl_3, PSCl_3 and decane)$ were added to both samples and the resultant mixtures separated by fractional distillation at atmospheric pressure. The sample which was γ -irradiated had 13.5% of the $P^{\frac{3}{2}}$ carried by PCl₃, none by POCl₃, $2\frac{9}{6}$ by PSCl₃ and the remainder was retained in the decane; the other sample had 3% of the P³² carried by PCl_3 , none by $POCl_3$ or $PSCl_3$ and the remainder was retained in the decane. Equal specific activities were found for the PCl₃ fractions from a given sample. The γ -rays converted some of the dissolved phosphorus to red phosphorus and the latter precipitated; therefore, the solution was not completely homogeneous during the latter part of the irradiation. A fraction exchange of 0.12, corrected for exchange that occurred in the control sample, was attributed to the γ -irradiation. This fraction corresponds to an exchange of 5.2×10^{19} phosphorus atoms per gram of solution. The energy absorbed by the sample was calculated to be 2.3×10^{15} Mev. g.⁻¹ indicating that about 2.3 phosphorus atoms exchanged per 100 ev. absorbed.

Discussion

Species Containing P³².—Equal specific activities were found for all PCl₃ fractions from the reduced pressure distillations of short-time irradiated samples and from atmospheric distillations of long-time irradiations. Fractions of PCl₃ which were collected in the constant specific activity region probably contained only P³²Cl₃ as the species with P³². Those fractions in the peak region which had increased specific activities contained either species in addition to P³²Cl₃ or the enrichment of P³²Cl₃ resulted from a reaction in the distillation pot.

The specific activity of each successive $POCl_3$ fraction was less than that of the preceding fraction which indicates that this radioactivity was due to $P^{32}Cl_3$ which was washed from the distillation head by the liquid $POCl_3$. The specific activity increased in successive $PSCl_3$ fractions implying that a radioactive product with a b.p. of about 125° was present. However, it was a very small fraction of the total P^{32} radioactivity.

The identity of the species retained in the decane was not established definitely. A small amount of this activity probably was due to hydrolysis of $P^{32}Cl_3$ during post-irradiation handling procedures. The activity was not removed when PCl_5 carrier was added, reduced to PCl_3 with white phosphorus and distilled. Neither was it carried by P_4S_3 , P_4S_{16} or P_4S_7 when these compounds were added, chlorinated and distilled. In the samples (A, D', F, K) to which treated decane was added as carrier, the activity retained in the decane was extracted with water. On other samples about 70% of this activity was not extracted by aqueous solutions (acidic, neutral or basic) and was not chlorinated by PCl₅ to make it water extractable. The change probably was due to a reaction of impurities in the decane with the high boiling component and not with P³²Cl₃. Reaction with P³²Cl₃ could not account for any sizable percentage of P³². A solution of reagent grade decane, POCl₃, PSCl₃ and P³²Cl₃ was distilled and all of the radio-activity was removed leaving a decane residue which was essentially free of P³².

Assuming that the samples which were irradiated contained only the elements phosphorus and chlorine, the P^{32} must then have been present as elemental phosphorus and/or phosphorus-chlorine compounds. In addition to the well known phosphorus halides PCl₃ and PCl₅, Besson and Fournier⁶ have reported a synthesis of P₂Cl₄ (b.p. 180°, f.p. -28°). They reported that P_2Cl_4 decomposed upon heating to give elemental phosphorus and PCl₃. The formation of P₂Cl₄ during the recoil process might explain the activity in the peak and that retained in the decane. As the temperature of the distillation pot is raised, the P_2Cl_4 containing P^{32} should decompose yielding high specific activity PCl₃ and elemental phosphorus. The P³²Cl₃ would then distill with the last fractions of PCl_3 , and the elemental phosphorus would remain in the distillation pot. Attempts to synthesize P_2Cl_4 were unsuccessful, but it is the only known phosphorus halide with the required properties.

If $P^{32}Cl_5$ was formed during the irradiations, the P^{32} would have exchanged between this compound and PCl_3 .⁷ The results of this study did not give indication of an exchange reaction. The length of time before analysis did not significantly affect the amount of radioactivity that was distilled with the PCl_3 fractions, and radioractive PCl_3 was not found in the distillation pots. Any exchange must have taken place in the reactor or following the irradiation before analysis.

Radiation Effects.—Extrapolation of the data in Fig. 3 indicates that 50 to 60% of the P³² atoms are initially in combination as P³²Cl₃. In samples irradiated for longer than 5 min. at a flux of 6 × 10^{11} n. cm.⁻² sec.⁻¹, about 90% of the P³² is present

(6) A. Besson and L. Fournier, Compt. rend., **150**, 102 (1910). (7) W. E. Becker and R. E. Johnson, THIS JOURNAL, **79**, 515

(7) W. E. Becker and R. E. Johnson, THIS JOURNAL, 79, 5157 (1957).

as $P^{32}Cl_3$. These data suggest that some of the initial products which contain P^{32} are converted to $P^{32}Cl_3$ by γ -ray induced radiolysis during irradiation. Further indication of this can be noted in the results of samples G and E which were given similar reactor irradiations. The additional γ -irradiation given sample E brought about an increase in retention from 75 to 98%.

If a phosphorus halide such as P₂Cl₄ is formed in the recoil process, it should be converted to PCl₃ if oxidizing agents are produced by the radiolysis of PCl₃. The results of the γ -ray induced exchange of white phosphorus with PCl₃ substantiate the presence of oxidizing agents in irradiated PCl₃. The number of phosphorus atoms that could be oxidized by the absorption of 3×10^{10} Mev. sec.⁻¹ is approximately 7×10^{14} atoms sec.⁻¹, and this is much greater than the rate of production of P^{32} atoms. Of course the probability for oxidation of products containing P^{32} is small unless a stable radiolysis product is formed,8 but the formation of PCl₅ which is both stable and a good oxidizing agent seems plausible. At the same time a reduced phosphorus halide must be produced also, and the concentration of this and PCl₅ should reach a steady state if the irradiation time is long enough.

The marked radiation effect in the PCl_3 system explains why Conn and Hein³ observed a constant per cent. retention in their study. Their samples were irradiated sufficiently long so that only $P^{32}Cl_3$ was present as a major product.

Recoil Effects.—A reduced percentage of P^{32} was found combined as the subject compound in the short-time irradiations of PCl_3 or $POCl_3$. Evidently, chemical changes accompany a rather large fraction of the $P^{31}(n,\gamma)P^{32}$ reactions in these compounds.

The distribution of products in reactor irradiated POCl₃ appears to be influenced by γ -radiation similar to PCl₃, and the net effect is the conversion of P³²Cl₃ to P³²OCl₃. There is insufficient data at present to estimate the extent of this conversion in either of the two irradiations. If the change due to γ -radiation can be estimated and subtracted, the ratio of P³²Cl₃ to P³²OCl₃ should reflect the probability of their formation following neutron capture and hence indicate the extent of bond breaking accompanying these nuclear reactions. Further work is in progress in the study of the POCl₃ system.

MANHATTAN, KANSAS

(8) C. J. Chien and J. E. Willard, ibid., 77, 3441 (1955).